PAGE

NCP-005 Remote Sensor Platform

[image: image1.jpg]

 Figure A

Jason Hunt – nulluser@gmail.com
Andy Kuns – andy.kuns@gmail.com
Draft 1 – 7/13/2007

Table of contents

Section

1. Overview

2. Leg System

2.1 Inverse Kinematics

2.2. Four Bar Linkage

2.3 Leg torque calculations

3. Controller Boards

3.1 Motion controller board

3.2 Servo controller board

4. Communication

4.1 Motion controller communications

4.2 Servo controllers board communications

5. Embedded Linux System

6. Windows Host Software

7. Power system

8. Fabrication and parts

List of figures

Figure

A.
Image of robot

1.
Top and side view of leg

2.
Side view of leg for Kinematics

3.
Four Bar Linkage

4.
Motion controller board

5.
Servo controller board

List of Tables

Table

1.
Motion controller board connections

2.
Servo controller board connections

3.
Parts List

1. Overview

This robot was designed as a remotely controlled platform for image and sensor data gathering. It communicates with a base planning station using WiFi and is capable of running in an unsupervised mode for extended periods of time. This document describes the electrical and mechanical systems in detail to facilitate modifications to the robot for specific applications.

2. Leg System

[image: image2.png]Figure 1

Side View

X+

Each leg has three degrees of freedom, hip rotation (θ1), hip lift (θ2) and knee lift (θ3). The hip joints are actuated with two Futaba S3004 servos. The knee joint has a lower torque requirement therefore a Hitec HS-81 was used. The link segments are directly attached to the servo with one exception. The hip lift servo is connected the link with a four bar linkage. L1-L3 and D1-D2 are physical parameters of the leg and are needed in the inverse kinematics and four bar linkage calculations.

The system uses four types of data to represent where the leg is in space.

1. Local Cartesian coordinates. Each leg has a separate local coordinate system with the origin placed at point P0 in figure 1. The z axis increases while moving from the front of the robot to the back. The x axis is positive with increasing distances away from the center and the y axis increases downward.

2. Joint angles. θ1 increase as the hip is rotated toward the front of the robot. The zero point is defined as when the leg is orthogonal to the robot base. The hip lift angle, θ2, is zero when the leg is facing straight out. It increases to approximately 65 degrees when fully lowered. A conversion is used to change this desired leg angle into the correct servo angle. This takes place before the servo position is calculated. The knee lift angle is zero when the leg is fully extended and increases as the end effector is brought closer to the robot frame. The joint angles are converted to servo angles before the servo position is calculated.

3. Servo position. The servo position is stored internally as an unsigned character with range [0..255]. This represents approximately 180 degrees of motion. Servo angles are converted to servo positions by using the following formula: P = scale * angle + offset. Where P is the servo position, offset is a base offset and scale is a linear scaling factor. These constants must be calibrated to compensate for differences among servos.

4. Output pulse width. Standard radio control model servos use a pulse width as a position input. Typically the width ranges between 1ms and 2ms. The frequency of this pulse train is 50 Hz. The average torque output of a given servo will fall when the update frequency drops below this.

2.1 Inverse Kinematics

[image: image3.png]Figure 2

X+

When the leg is orthogonal to the robot base, the end effector is offset from the origin in the z direction by d1+d2 (figure 1). This complicates solving for the hip rotation and leg lift angles. The hip angle will always be less then the expected atan(z1/ x1) because of this offset. This offset angle determines how much the hip rotation angle needs to be modified to position the end effector correctly.

First the distance from the origin to the end effector on the x-z plane is calculated,

[image: image4.wmf]2

2

y

x

d

+

=

The offset (d1+d2) is a constant, so the required offset angle is:

[image: image5.wmf]÷

ø

ö

ç

è

æ

+

=

-

d

d

d

ofs

2

1

1

sin

Now we can compute the correct hip rotation angle:

[image: image6.wmf]ofs

x

z

-

÷

ø

ö

ç

è

æ

=

-

1

1

tan

q

Next, the distance from the end effector to the end of link1 is calculated. The will allow the calculation of the local X-Y plane for the hip lift and knee lift angles.

The distance and leg offset are known, as is the length of the first link. Using these, the local x component is found:

[image: image7.wmf](

)

1

1

cos

*

l

ofs

d

x

-

=

The Y component of the requested end effector position remains unchanged and becomes y1 for convenience.

After these rotations take place, the final two links and associated angles can be thought of as residing in their own X-Y plane. Let (x1, y1) be the end effector position in this plane. A line (A) is constructed from the origin to this point. Let t2 be the angle between this line and the X-axis. t1 is the angle between this line and link 2. Angle t2 is straightforward to calculate using atan2.

[image: image8.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

-

1

1

1

2

tan

x

y

t

This result is range check to make sure the requested angle is physically possible.

t1 is calculated using the law of cosines. This is the general form for the triangle in question:

[image: image9.wmf]1

2

2

2

2

2

3

cos

2

t

al

l

a

l

-

+

=

Solving for t1:

[image: image10.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

-

=

-

2

2

2

3

2

2

1

1

2

cos

al

a

l

l

t

Using t1 and t2, the hip lift angle is simply:

[image: image11.wmf]2

1

2

t

t

-

=

q

Similar logic is used for the knee lift angle. Here is the general form again relating knee lift to the links:

[image: image12.wmf])

180

cos(

2

3

3

2

2

2

2

3

2

q

-

-

+

=

l

l

l

l

a

Solving for θ3:

[image: image13.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

+

-

=

-

3

2

2

2

2

2

3

1

3

2

cos

180

l

l

a

l

l

q

Subtracting from 180 degrees is necessary because the fully extended configuration is zero degrees, not 180 as would be expected.

Now all three joint angles are known. The hip rotation and knew lift angles can be directly related to servo positions. The hip lift angle need additional conversion because of the four bar linkage.

2.2. Four Bar Linkage

[image: image14.png]Figure 3

The hip lift servo is connected to the knee joint using a four bar linkage. This allows the hip to have a home position that requires very little torque from the servo to maintain. The four bar linkage problems reduces to this question: What servo angle is needed for the desired joint angle?

In figure three, r1 is the distance between the center of the servo output and the hip pivot point. r2 is the distance between the hip pivot and the point where the linkage connected to the hip link. r3 is the length of the linage and r4 is the radius of the servo arm. θ1 to θ4 are local and should not be confused with the leg joint angles.

Treating r1-r4 as vectors the following link closure equation is defined:

[image: image15.wmf]4

1

3

2

r

r

r

r

+

=

+

.

Separating horizontal and vertical components yields:

[image: image16.wmf]4

4

1

1

3

3

2

2

cos

cos

cos

cos

q

q

q

q

r

r

r

r

+

=

+

[image: image17.wmf]4

4

1

1

3

3

2

2

sin

sin

sin

sin

q

q

q

q

r

r

r

r

+

=

+

The constants are grouped into a reference point

[image: image18.wmf]2

2

1

1

cos

*

cos

q

q

r

r

tx

-

=

[image: image19.wmf]2

2

1

1

sin

*

sin

q

q

r

r

ty

-

=

With length

[image: image20.wmf]2

2

ty

tx

l

+

=

This leaves

[image: image21.wmf]tx

r

r

=

-

4

4

3

3

cos

cos

q

q

[image: image22.wmf]ty

r

r

=

-

4

4

3

3

sin

sin

q

q

Solving for θ4 while discarding θ3:

[image: image23.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

+

-

÷

ø

ö

ç

è

æ

-

=

-

-

4

2

3

2

4

2

1

1

4

2

cos

tan

180

lr

r

r

l

tx

ty

q

Again, the subtraction from 180 is needed to wrap the angle back around. This local θ4 is actually the θ2 needed for the hip lift servo angle.

2.3 Leg torque calculations

None yet.

3. Controller boards

Two printed circuit boards were custom fabricated for this project because no commercially available boards fit the unique timing and redundancy requirements of the system. The boards were designed in Eagle Cad and fabricated by pcbfabexpress.com for a reasonable price.

3.1 Motion controller board

[image: image24.png]

 Figure 4

The motion controller uses a dsPIC microcontroller. Its main purpose is to interface the servo controllers to the gumstix computer. This specific controller was selected because it contains two UARTs, O0ne is used to connect to the linux computer and the other is used to communicate with the serial ring that contains the servo controllers.

Table 1

A0-A9
Analog inputs

D0-D4
Digital I/O

S1-S6
Servo Outputs

S0
Power selection for servo system

R2
TTL Level serial receive

T2
TTL Level serial transmit

R1
Same signal as Rx, TTL level

T2
Same signal as Tx, TTL level

RX
RS232 Port receive to gumstix

TX
RS232 Port transmit to gumstix

M
MCLR

C
Program Clock

D
Program Data

3.2. Servo controller board

[image: image25.png]NCP-B-001 Rev A
@) 1c) 2007 sason Hum

Figure 5

S0-S5
Servo Outputs

S6-S7
Analog Inputs

SVcc
Servo Port

Res
MCLR

PGD
Program Data

PGC
Program Clock

PMG
Low voltage programming input

Tx
Connects to SynRx on motion board

Rx
Connects to Tx on motion board

5V
5 Volt supply

Gnd
Board ground

 Four servo/analog controller boards communicate with each other and the motion controller board using a serial ring. Three are used for leg control and one is used for the forward/reverse gimbal platforms. Each leg board is responsible for six servo PWM outputs and two analog inputs connection to the foot pressure sensors. The gimbal board controls the servos that position the IR sensors and camera. It also sample the analog data fro the IR sensors.

4. Communication

An onboard computer capable of running linux interfaces with a host control station via WiFi and to a local controller board via serial. The controller board coordinates the servo controllers and distributes the servo positions. It is also responsible for packaging the analog telemetry information. The servo controllers need to output an accurate pulse train to all six servos simultaneously. Interrupts for serial receive can not be used because the interrupt might occur too close to the PWM output transition. If this happens, the pulse width of the servo PWM signal will be extended causing the servo to glitch. To fix this problem, a serial interface protocol was designed that does not rely on interrupts.

4.1 Motion controller communications

Two I/O channels of the motion controller board are utilized for this communication interface. Tx is an output and sends data directly to all four servo controllers. SynRx is bidirectional and is used to sync packets and receive analog data.

Set CurrentDevice to 0

Set SynRx as an output

TransferData:

// Send phase

Set SynRx high

Wait a set amount for servo board to get into receive loop

Send CurrentDevice number

Send all six servo positions for the current device

Set SynRx low

// Receive phase

Wait for response packet on SynRx pin

Receive and store analog 0 data

Receive and store analog 1 data

Receive and store high analog bits

// Housekeeping

Increment CurrentDevice

If (CurrentDevice > number of devices)

 Set CurrentDevice to 0

Set SynRx as an output

Set SynRx low

Wait for boards to catch up

Jump to TransferData

This pseudocode is not entirely accurate because this code is implemented using interrupts on the actual board.

4.2 Servo controllers board communications

Set TX as an input

ServoMain:

// Servo timing

// This can take anywhere from 6 to 12 milliseconds

for (int i = 0; i < 6; i++)

Set servo_output[i] high

Wait base_offser delay

Wait servo_positon[i]

Set servo_output[i] low

// Communications

Wait for Tx to go high

Receive DeviceID

Receive Servo Positions

If the device ID is the same as the board,

Copy data to local servo positions

Set Tx as an output

Send analog 0

Send analog 1

Send high analog bits

Set Tx as an input

Jump to ServoMain

At a servo update rate of 50Hz, there is a 20ms time windows to perform the communication and servo update. A maximum of 12 ms can be used by the servo timing code. This leaves a minimum of 8ms available for serial transfer. At 115200 baud, 87uS per byte is needed when the UART is configured for 8 data bits, one stop bit and no parity. With 10 bytes per board 40 bytes are needed total which takes 3.48 ms < 8ms, well with the time constraints.

5. Embedded Linux System

This computer is where the motion planning and leg kinematics calculations take place.

6. Windows Host Software

The software is used to setup high-level goals and monitor the video and sensor data coming back from the robot. The computer can be located anywhere as long as both it and the robot have an internet connection available. Video frame rate and sensor data capture rate will decline as more and more router are inserted between the robot and the host. For this reason is it preferable to connect the host to the robot using an ad-hoc WiFi network with no other devices using on the communications channel.

7. Power system

The main power source in untethered operation is two 5-cell NiMH battery packs wired in parallel. One 5V DC-DC converter is used to power the motion and servo controllers, and another is used to power the gumstix linux computer. The servos take their power directly from the battery packs which produce 6.0 volts when fully charged. Three toggles switches are provided to establish independent control of three power systems. The first power system consists of the gumstix computer, WiFi dongle and the webcam. The second system powers the motion controller board and the servo controller boards. The final system consists of the servos.

8. Fabrication

The robot was designed and modeled in SolidWorks.

Table 3 – Parts list

Part
Supplier
Quantity
Cost
Extended Cost

Plastic Fabrication
Architectural Vision
1
30.00
30.00

gumstix verdex XL6P
Gumstix.com
1
169.00
169.00

console-vx
Gumstix.com
1
25.00
25.00

serial null-modem cable
Gumstix.com
1
12.00
12.00

5.0 volt power adapter
Gumstix.com
1
10.00
10.00

USB Gender Changer
Gumstix.com

8.00
8.00

Servos

Futaba S3004 Servo
Tower Hobbies
12
12.54
150.38

Hitec HS-81 Servo
Tower Hobbies
6
15.66
93.94

PCB

Board fabrication
Pcbfabexpress.com
2
78
156.00

DSPIC30F4013-30I/P
Newark
1
5.86
5.86

PIC16F628A-E/P
Microchip
5
1.85
9.30

5-Cell Battery

2
30.00
60.00

¼ inch Thrust Washer
Jameco
20
2.72
54.40

Servo hinge
Jameco
10
3.47
34.70

Miscellaneous

200.00

Total
1018.58

PAGE
8/1
NCP-005 Remote Sensor Platform. Hunt, Kuns - 2007

_1245771450.unknown

_1245771644.unknown

_1245779249.unknown

_1245780362.unknown

_1245847803.unknown

_1245780566.unknown

_1245780299.unknown

_1245779198.unknown

_1245779227.unknown

_1245779241.unknown

_1245779214.unknown

_1245778682.unknown

_1245771496.unknown

_1245771524.unknown

_1245771480.unknown

_1245771270.unknown

_1245771442.unknown

_1245771385.unknown

_1245770941.unknown

